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Abstract—Bayesian networks in fusion systems often contain
latent variables. They play an important role in fusion systems
as they provide context which lead to better choices of data
sources to fuse. Latent variables in Bayesian networks are mostly
constructed by means of expert knowledge modelling. We propose
using theory-driven structural equation modelling (SEM) to
identify and structure latent variables in a Bayesian network.
The linking of SEM and Bayesian networks is motivated by
the fact that both methods can be shown to be causal models.
We compare this approach to a data-driven approach where
latent factors are induced by means of unsupervised learning.
We identify appropriate metrics for URREF ontology criteria
for both approaches.
Index Terms – latent variables, Bayesian networks, structural
equation modelling, URREF ontology

I. INTRODUCTION

Bayesian networks (BNs) are commonly used in informa-

tion fusion as it is extremely powerful in integrating informa-

tion from various sources and disciplines. In order to utilise

Bayesian networks for decision-making, problem perspectives,

values and goals of the stakeholders need to be included as

variables in the model as they provide crucial context to the

problem domain. Most often these variables are included in

the BN structure as latent variables - they are factors that

contribute to the system for which data do not exist. There are

two main phases in a fusion life cycle, namely the inception

and design phase, and the routine operation (runtime) phase

[1]. Latent variables play an important role in both these

phases. In the design phase they provide context which lead

to better choices of data sources to fuse. During routine

operation, fusion can take on three forms, namely context

fusion, observation fusion and latent fusion. Latent variables

provide a mechanism for all three forms of fusion [2]. Apart

from the role they play in information fusion, there are several

additional advantages to having latent variables in BNs [3], [4]:

It leads to more parsimonious models, problem perspectives,

goals and values are integrated as variables into the model and

it controls the size of conditional probability tables.

It is widely advocated that BNs can be designed from

multiple information types such as empirical data, sensors,

expert knowledge and literature. A BN consists of a causal

structure and a set of parameters over this structure. The

structure can be designed by a group of experts and the

probabilities can be estimated using the EM algorithm, or both

the structure and probabilities can be machine learned, or both

can be elicited from expert knowledge. In the case of expert

knowledge modelling, the causal structure most often contains

latent variables for which empirical data is not available.

Incorrect expert knowledge handling could result in epistemic

uncertainty because by definition it is not the true system, but

knowledge about the true system [2]. Some typical mistakes

made with expert knowledge modelling are: 1) Misunderstand-

ing the problem context, 2) adding complexity without value,

3) confusion about what the variables represent and 4) biased

estimation of probabilities [4].

Many knowledge engineering processes exist in order to

provide guidelines on BN design such as Knowledge Engi-
neering with BNs process (KEBN) [4], Iterative BN Devel-
opment Cycle [5], and Bayesia Expert Knowledge Elicitation
Environment (BEKEE) [6]. Although knowledge engineering

processes provide guidelines and support on the identification

of variables, structural design and parameter elicitation, the

main focus is on parameter elicitation as this is perceived as

the main entry point of epistemic uncertainty into the system

[7].

Numerous studies in ecological modelling and environmen-

tal management have highlighted problems with the design of

the BN structure. First, the BN structure is created according

to previously accumulated subject-matter information which

is time-consuming and error-prone [8], [9]. Secondly, in mul-

tidisciplinary applications with many contentious subjects, it

is easy to generate overly complex models [10]. One might

argue that BN structures can be learned from data, but causal

relationships cannot be ascertained from statistical data alone

[11], [12]. Furthermore, as mentioned earlier, there are several

advantages to the inclusion of latent variables in a BN which

cannot be assumed through automated structural learning. This

might result in a limited understanding of the system and

flawed theoretical explanations [11], [13].

In the case where no statistical data is available, other

knowledge representations such as concept and morphological

maps [14], or qualitative probabilistic networks [15] can be

used to design the BN structure. However, when statistical

data is available, structural equation modelling (SEM) can

be used to combine expert knowledge and data in a causal

structure. The idea of this approach is to use the tested causal

structure from a SEM as the structure for the BN. The BN

modelling tasks left to do are the discretisation of nodes,

the number of states and the cutoff values of the discrete
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states. This approach of linking SEM and BNs is illustrated

in [16] and [11]. The application areas are ecological and

consumer modelling respectively. Both these studies argue

that SEM and BNs can be viewed as causal models under

certain conditions and because of this analogousness, the two

methods can be linked. In fact, Druzdel and Simon [17]

showed that the mechanism-based view of causality in SEM

is directly applicable to BNs and that the prior theoretical

knowledge about a domain, captured in a SEM can be used as

the BN structure. Anderson and Vastag [13] further reviewed

SEM and BNs in the context of a unified causal modelling

framework which also motivates the feasibility of linking the

two methods.

In this paper, we motivate and describe the construction of

latent variable BNs using SEM. Because it is a SEM structure

applied to a probabilistic framework, we call this approach

probabilistic SEM. We also describe an alternative approach

based on unsupervised learning. The second approach is

probabilistic latent factor induction as described in [18]. In

this approach the latent variables and structure are learned

from observed data. We investigate uncertainty induced in the

model and propose appropriate metrics for URREF criteria

under the Representation and Data criteria groups for both

approaches. Finally we illustrate the two approaches by means

of an application.

II. APPROACH I: PROBABILISTIC SEM

A. Causal Models

Defining both SEM and BNs as causal models is crucial

in the argument to link the two methods. The fundamental

questions of causality are: 1) What empirical evidence is

needed in order to infer cause-effect relationships? 2) Once we

have accepted the legitimacy of the cause-effect relationship

in 1, what inferences can we draw from the information

[12]? The appropriate approach to answer these questions has

been debated mainly because of a lack of clear semantics for

causal claims and well-founded mathematical tools for deriv-

ing causal answers [12]. More recent advances in graphical

models transformed causal models by identifying causality

under explicit weaker assumptions than generally made [19].

These assumptions are causal sufficiency, the causal Markov

and faithfulness principle, and independence of specified and

unspecified causes [11], [13]. Under these assumptions it is

possible to elucidate potential causal relationships from data,

derive causal relationships from a combination of knowledge

and data, predict the effect of actions and evaluate explanations

for observations and scenarios. In Pearl’s words, causality has

been mathematised [12].

Apart from SEM and BNs being viewed as causal models

upon meeting the required assumptions [13], other similarities

between the two methods exist. SEM and BN are both

graphical models in the sense that they use nodes to represent

variables and directed arcs to represent causal links between

the variables. Also, they can estimate underlying latent vari-

ables in the system using observed variables [11].

B. Structural Equation Modelling

SEM is often used in the fields of social science, business

and marketing to model abstract concepts such as intelligence,

attitude, and inclination [19]. It is a multivariate statistical

method that incorporates regression, path anaysis and factor

analysis to explore relationships among correlated variables

[11]. SEM can be summarised as a linear model concerned

with the modelling of causal relationships between variables

(both observed and latent) [19]. The initial intent of SEM was

to combine qualitative cause-effect information with statistical

data, implying that in the equation y = βx+ε, the equality sign

conveys ‘is determined by’, rather that algebraic equality [12].

The mathematical framework of causality allows the SEM

practitioner to return to this initial intent. Due to its flexibil-

ity, SEM is preferred by researchers in modelling situations

where one cannot simply design and conduct experiments,

for example, because of ethical concerns, or when data is

not observable [20]. Typically an observable dataset consists

of a test or a survey that measures different aspects of an

unobservable concept. Although we cannot directly measure

someone’s inclination towards becoming an entrepreneur, we

can be fairly confident that a person is inclined to become an

entrepreneur if we know that the respondent strongly agrees

to being his/her own boss and taking a lot of risk, when given

a survey. The SEM practitioner performs factor analysis to

determine the appropriate number of factors to include in the

model. It takes sufficient knowledge of the data to understand

what each factor represents as well as to establish the path

between the factors. The model is then fitted and evaluated

and the practitioner can interpret the result.

C. Bayesian networks

BNs need no introduction in the field of information fusion

and numerous applications has been reported on [5], [21],

[22]. Unlike SEM, where a theoretical causal structure is

developed, the BN structure can be learned from data or

elicited from expert knowledge. Although a theoretically valid

structural model can be forced as a BN, the resulting BN is

not as capable as SEM for theoretical explanations [13]. A

limitation from a social science perspective is that they do

not differentiate between a latent construct and its measures

(observed variables) [16]. The main role of BNs is to facilitate

the analysis of actions as they are suited for prediction and

diagnosis, rather than theory confirmation.

D. From SEM to BN

The output of a SEM is an empirically validated model

based on theoretical construction [16]. The causal path be-

tween factors and manifest variables are all specified according

to the relevant theory and this structure is used as the BN

structure. The only tasks left in the BN design phase are the

discretisation of nodes, number of states and the estimation

of probabilities. In [16], latent scores computed for SEM

are used as raw data for probability estimation in the BN.

The probabilities, when the network structure is specified, are
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learned by maximum likelihood, where the occurrence of the

variable states are simply counted [6].

III. APPROACH II: PROBABILISTIC LATENT FACTOR

INDUCTION

Probabilistic Latent Factor Induction is a workflow within

the BayesiaLab software package [6]. It has the same objective

as SEM in the sense that it aims to find causal relationships

between variables, but is based on principles derived from

information theory. While correlation and covariance are the

central measures for SEM, probabilistic factor induction is

based on measures from information theory.

A. Structural learning on observed variables

Structure learning involves a data driven process to find the

optimal structure on the observed (manifest) variables. The

aim is to find a tree (a graph without cycles) structure for

the network which restricts the number of parents for each

node to 1, making the search much simpler. This algorithm

is known as the Chow-Liu algorithm or Kruskal’s algorithm

and it produces the maximum weight spanning tree for the

network [23]. Once a structure has been obtained we can

induce small changes to the network in order to find the

local maximum. These small changes are defined as adding,

removing or reversing an edge to the network, while making

sure that no cycles are created by these changes [24]. It is not

guaranteed that a better network will be found after all the

local modifications have been performed, in which case the

initial network is considered the best network. Alternatively,

one can use techniques such as random restarts [24] which

starts the process of local modification with a different initial

network (possibly by adding a small noise to the data) to see

if many different starting points lead to the same or similar

local optimal network.

Two graphs which are Markov equivalent contain the same

conditional independence assumptions. This means the graphs

which are Markov equivalent belong to the same Markov

equivalence class and this happens when the undirected skele-

ton and the v–structures of the graphs are the same. Put

differently, “different graphs that share exactly the same d-

separation properties are said to be Markov equivalent” [23].

We can use this fact to narrow our search space, which entails

exploring the space of equivalence classes of BN as opposed

to the entire space of BN [27]. Essentially, we are searching

for a group of networks that belong to the same family,

instead of directly looking for the single best network. By

doing so, we can bypass many redundant calculations and

only go into detailed modifications once we have obtained the

optimum equivalence class. After the optimum equivalence

class has been found, we can search for the local optimum

by adding or removing directed or undirected edges [25].

The Equivalent Class (EQ) algorithm can be used alongside

the minimum weight spanning tree (MWST) algorithm, on a

fully unconnected dataset. If both algorithms return the same

network, it is quite possible that the network obtained is the

optimal network.

B. Clustering

Here, the nodes within the network are clustered, based

on the Kullback-Leibler (KL) divergence, using hierarchical

agglomerate clustering. The KL metric is calculated for every

pair of nodes, which measures how close a node is to every

other. Although the KL metric is not symmetrical - and

therefore not a distance it is a sufficient metric to measure

the impact of removing a link between nodes. At the start

of the process, the nodes are all treated as a cluster on its

own and two clusters with the smallest distance are joined

into a single cluster. This process is repeated either until a

satisfactory number of clusters have been obtained or until

no clusters are deemed close enough to be joined into one

cluster. This is similar to performing an exploratory factor

analysis where the researcher tries to find the optimal number

of factors within the data.

Cross-validation is performed to check whether the cluster-

ing groups the same nodes together frequently. To do this we

start off by adding small noise to the data, create the network

structure, perform clustering on the network and repeat this

process many times. If the results show that same nodes are

clustered into the same group many times over the iterations,

we can safely assume that it is indeed the most likely scenario

of clustering outcome. Pair-wise KL divergence is calculated

for all variables in the network and those values are used to

perform hierarchical clustering.

C. Multiple Clustering

We are now interested in finding factors from the clustering

data, with as many factors being introduced into the model as

the number of clusters. This process entails inducing factors

with discrete states for each cluster, making sure that the

factors have high mutual information with their children nodes

[26] The imputing of factor states to each observation can

be done using maximum likelihood [18]. The representative

values for each state can be obtained by calculating the

weighted average of the manifest variables’ means given the

specific states, where the weights are relative significance in

relation to the factor.

So far we have only dealt with how the observed variables

interact with factors. This is what is known as the measurement

model in the field of SEM [19] . We will now move onto the

structural part which deals with how latent variables interact

with each other.

D. Structural learning on latent variables

Here we must find the relationships between the factors

while keeping the relationship between factors and their man-

ifest variables intact. In order to enforce this restriction, we

must resort to using the Tabu algorithm, which searches for

the local optimum while verifying at every step that it does

not belong to a set of restricted networks [27]. Establishing

the relationships between the factors returns the structural part

of the model and this completes the network structure learning

of the data. Table I summarises the steps for PSEM and Latent

factor induction.
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TABLE I
STEPS IN TWO APPROACHES

PSEM Latent factor induction

1. Covariance matrix between observed variables 1. Learn structure from observed variables

2a. Confirmatory factor analysis (CFA) to confirm number of clusters
2b. Path analysis to confirm the structure

2. Cluster observed variables

3. Define latent factors using latent factor scores (create variables states) 3. Define latent factors for each cluster (create variables states)

4. Parameterise the model using EM algorithm 4. Learn structure between latent variables

IV. EVALUATION UNDER URREF - UNCERTAINTY IN

REPRESENTATION

At the core of this study is the investigation of alternative

approaches to expert knowledge modelling to construct latent

variables in BNs. In the context of information fusion, un-

certainty propagates throughout the life cycle of the fusion

system [1] and it is important to characterise this uncertainty

in order to understand decision consequences. It is for this

purpose that the Uncertainty Representation and Reasoning

Evaluation Framework (URREF) [28] ontology was created

in order to define and link uncertainty concepts in a fusion

system. URREF has four criteria groups namely Represen-
tation, Reasoning, Data and Data Handling. We argue that

Representation and Data criteria groups are most relevant to

evaluate uncertainty that propagates through the BN structure

development: The structure is a representation of the system

and it gets informed by data. The criteria for Representation
are compatibility, knowledge handling, adaptability, simplicity

and expressiveness. The criteria for Data are weight of evi-

dence, relevance to problem, credibility and quality. In this

section we match relevant metrics to criteria.

A. PSEM

1) Reliability: When working with SEM, their reliability is

typically confirmed using average variance explained (AVE)

and composite reliability (CR). Reliability is a measure

which quantifies the percentage of variance in an observed

variable explained by the latent variable [19]. If there are

little measurement errors, the reliability coefficient will be

high. The minimum recommended values are 0.5 and 0.7

for AVE and CR, respectively. The significance of factor

loading in the measurement model should be tested using the

t-statistic. One would hope to see values higher than 1.96

in absolute value for significance at 5% or higher than 2.58

in absolute value for significance at 1%. It is stated in [29]

that reliability is an attribute of an information source,and

measures the consistency of a measure of some phenomenon.

It forms part of the credibility criterion. In this case the two

metrics for reliability (credibility) are AVE and CR.

2) Accuracy and Simplicity: Chi-square test tests for sig-

nificance between actual covariance matrix and estimated

covariance matrix. Null hypothesis assumes no significant

difference between the two. This is rarely met because of

sample size sensitivity (small difference is seen as significant

in large samples). It also requires the condition of multivariate

normality, hence it is no longer seen as viable option. Three

types of indices are reported frequently: absolute t index, incre-

mental t index and parsimony-adjusted index. Absolute index

takes on values between 0 and 1 and it can be thought of as an

R2. But instead of measuring how much variance is explained

by the model, it measures how much the variance-covariance

matrices correspond to each other. Naturally, values closer to

1 are preferred. Incremental t index shows how the model

has improved relative to the baseline model which essentially

assumes the value of 0 for covariances [30]. Parsimony index,

as the name suggests, allows us to identify the simpler model

among the available models. If all models yield satisfactory

results that are of similar level, parsimony index prefers the

simplest model [30]. The absolute and incremental t indices

act as metrics for accuracy (under the Data criteria group).

The parsimony index acts as metric for simplicity (under the

Representation criteria group).

B. Latent factor induction

MWST is a simple, data driven method of finding a network

structure. Of course, using different algorithms for structure

learning will most likely lead to slightly different models

suggested by each algorithm. The minimum description length

(MDL) for each model can be evaluated to select the best

model. MDL operates under the logic that regularities within

the data can be compressed, meaning certain symbols can

be used to describe the data in a more compact way than

the actual data. Highly regular data can therefore be highly

compressed [31]. MDL consists of two parts as stated in the

following equation:

MDL(B,D) = αDL(B) +DL(D|B) (1)

where B is the model (Bayesian Network) and D is the

observed data, hence DL(B) is the complexity (number of

bits) of the suggested model and DL(D|B) is the number of

bits to describe the log-likelihood of the data given (with the

help of) the model, which is none other than the error [31]. Eq.

1 states that the MDL score is the sum of the complexity of the
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model and the complexity of the errors. Generally, if the model

is highly accurate it will need much description (as it will have

many terms) but the resulting error will be small. Conversely, if

the model is very simple, its description will be very short but

we will need a lot of information to describe its errors. The α is

a structural coefficient, or simply a weight, which we can use

to reduce the impact of model complexity. Even if the model is

highly complex and DL(B) is high, by making α small, model

complexity will have reduced impact on the overall MDL [5].

A fully unconnected network will translate to the minimum

value for DL(B) and a fully connected network will translate

the minimum value for DL(D|B). Thus obtaining minimum

MDL finds the right balance between the two extremes. If we

start off with a blank network, an edge will connect two nodes

only if the decrease in DL(D|B) is larger than the increase

in DL(B) [6].

The MDL score acts as metric for simplicity (under the

Representation criteria group).

C. Ambiguity

For the PSEM approach ambiguity can occur in the Repre-

sentation criterion group. In factor analysis, a latent variable is

a novel construct from the manifest variables. In many factor

models, however, the factors are not uniquely constructed and

therefore indeterminate [16]. This leads to a potential infinite

number of sets of that can be computed from any given

analysis that satisfy the stipulations of the common factor

model. Although not solved, measures have been put in place

to mitigate the problem [32]. Factor indeterminacy is relevant

during the design phase of a PSEM model, and we therefore

suggest that ambiguity needs to be added to the Representation
criteria group 1.

Table II summarises the evaluation metrics relevant to

URREF criteria in the respective approaches.

TABLE II
SUMMARY OF EVALUATION METRIC RELEVANT TO URREF CRITERIA

URREF
Criteria

PSEM Latent factor in-
duction

Reliability AVE KL divergence
CR

Accuracy Chi-square
R2 (absolute fit index)
CFI (incremental fit index)

Simplicity RMSEA (parsimony index) MDL
Ambiguity Factor score indeterminacy

V. APPLICATION

In this section we present an application in order to

illustrate the two approaches. This application falls in the

domain of consumer science. SEM is a popular modelling

technique in consumer science in which many theories are

validated with observed data in the form of questionnaires.

The latent constructs (or variables) in the theory drive the

1Ambiguity is an entity in the UncertainEvidence group, but that is not
relevant to Representation

questionnaire design.

Social Networking Sites (SNS) represent a great opportunity

today for companies to advertise their products and services

as well as target and personalise their messages based

on the data people declared online. However, how people

perceive the new advertising methods employed in SNS is

still largely unknown, as well as whether they consider such

advertisements to be an intrusion on their private, although

social, space. In addition, very little empirical research of

causal relationships exists, leaving unanswered questions

about how SNS users perceive advertisements posted on their

own online social profile.

The conceptual framework is based on Theory of Planned

Behaviour (TPB) [33]. The components of TPB are four

general constructs: behavioural intention, attitude, subjective

norm and perceived behavioural control. Following the TPB,

we thus predict that behaviour towards SNS advertising will

be influenced by the user’s attitude towards SNS advertising,

the subjective norms and perceived behavioural control. The

attitude is itself dependent on four main beliefs: trust, atti-

tudes towards advertising in general, advertising value and

advertising intrusiveness, which are themselves dependent on

other antecedent variables as described in the literature. The

study population comprised of active adult (18 years and older)

Facebook users. The survey was developed in English for both

South Africa and Australia and delivered online. Sampling

in both countries involved the use of market research firms

holding consumer panels where the firms’ provided a link

to the survey. Participants were incentivised by the market

research firms in accordance with their normal practices and

a sample of 401 were realised in both countries respectively,

resulting in a total of 802 respondents.

There are 9 factors in this SEM, namely Privacy Concern;

Trust; Ad 2 intrusiveness; Behaviour towards brand; Behaviour

towards ad Perceived behaviour control; Attitude towards ads;

Attitude towards FB ad; and Ad values. The observed data

consists of 46 manifest variables which we don’t discuss for

brevity. In all figures we only display latent variables and not

manifest variables.

A. SEM

The SEM, as well as estimated standardised path co-

efficients and squared multiple correlation for endogenous

variables were constructed in SPSS AMOS [34]. All path

coefficients as well as error variance were significant. The

resulting model (manifest variables ommitted) is shown in

Figure 1

The value of -.13 between Ad intrusiveness and Attitudes
towards FB ad indicates that there is an inverse relationship,

albeit relatively weak, between the two variables, where an

increase of 1 standard deviation in Advertising intrusiveness
will lead to a decrease of 0.13 standard deviations in Attitudes

2For the sake of brevity in figures, advertisement is abbreviated to ad
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Fig. 1. SEM

TABLE III
GOODNESS-OF-FIT SEM

Model fit index Index value
CFI 0.926
RMSEA 0.051
RMSEA upper 90% 0.054
RMSEA lower 90 0.049

towards FB ad. A strong positive relationship exists between

Attitudes towards FB ad and Behaviour towards ad, indicated

by the coefficient value of .79. The value of .63 for squared

multiple correlation of Behaviour towards ad shows that

Attitudes towards FB ad explains 63% of the variance in

Behaviour towards ad. Other values in the diagram can be

interpreted in the same way.

Furthermore, Table III shows values for the model goodness

of fit. Bentler’s confirmatory fit index (CFI) is larger than

0.9 while the Root Mean Square Error of Approximation

(RMSEA) is less than 0.055, which are both indicative of

an adequate overall model fit.

B. Probabilistic SEM

The PSEM and probabilistic latent factor induction models

were constructed in BayesiaLab 7.0.7 (www.bayesia.com).

Here, the path between factors and manifest variables are all

specified according to the relevant theory and the theoretical

or expert-developed SEM is turned into a BN for inference.

The corresponding structural model of the probabilistic SEM

(PSEM) is shown in figure 2.

The graph displays small windows which show the posterior

probability visually as well as numerically: the column of

numbers on the right lists the different states of the nodes and

the column on the left lists the respective default probability

of belonging to the state. A high valued state indicates a

favourable or a strong opinion towards the specific variable.

The probabilities, when the network structure is specified, are

learned by maximum likelihood, where the occurrence of the

variable states are simply counted [18]. Learning probabilities

in this manner also makes the network less responsive to

changes, as the conditional probabilities will only reflect the

Fig. 2. Probabilistic SEM

changes if there are observations in the data which possess the

given state value for the variable.

C. Latent Factor Induction

Figure 3 illustrates the output of the manifest variable

cluster of the probabilistic factor induction approach (Step 1,

column 2 in Table I). Figure 4 shows the clustering output

(Step 2, column 2 in Table I). From the manifest variable

names, it can be seen that question groups were clustered

together. For example, a manifest variable starting with ‘Q8’

belongs to a group of questions designed to address ‘Trust’.

This information, however, is not available to the clustering

algorithm. Whereas 9 variables were identified in the SEM

approach, the clustering algorithm could only elucidate 7

variables. Figure 5 illustrates the final structure where the

relationships between the latent factors are learned. Only the

latent variable structure is shown. The lean structure typical of

the MWST algorithm where all nodes only have one parent is

evident.Behaviour towards ad and Behaviour towards brand
were merged. Figure 6 illustrates the marginal probabilities of

the latent factors.

D. Discussion

The PSEM takes the SEM developed from theory by the

researcher and converts it into a BN. This allows SEM

practitioner to take a step forward by adding the capability

to perform what-if analysis onto the network. On the other

hand we have the latent factor induction, which can be

used without any prior knowledge regarding the data, as the

process is purely data-driven. This can assist the practitioner

in dynamically exploring the data. This particular application

does not contain a target node, which makes it difficult to

directly compare the performance of the two approaches. It

is, however, encouraging that similar clustering results were

obtained by the latent factor induction than was suggested by

the theoretical SEM construct.

VI. CONCLUSIONS

In this paper we introduced two alternative approaches to

expert knowledge modelling to construct latent variables in
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Fig. 3. Probabilistic latent factor induction: Step 1

Fig. 4. Probabilistic latent factor induction: Step 2

BNs. The one approach (PSEM) is theory-driven and the other

(Latent factor reduction) is data-driven. We motivate using

SEM in the theory-driven approach as both SEM and BNs are

causal models. We recommended metrics for URREF criteria

in both approaches and finally we illustrated the output of the

two techniques by means of a consumer science application.

The design of an evaluation framework using URREF

metrics will enable us to test and compare different methods

to construct latent variables. For future work, a first priority

is to compare these two approaches with an expert knowledge

Fig. 5. Probabilistic latent factor induction: Step 3

Fig. 6. Probabilistic latent factor induction: Step 4

modelling approach. On a technical level we would like to

expand on the MWST algorithm to allow for more complex

BN structures. Finally we plan to compare the methods on an

end-to-end fusion system.
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